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Abstract

Control groups can sometimes provide counterfactual evidence for
assessing the impact of an event or policy change on a target variable.
Fitting a time series model to target and control series offers potential
gains over a direct comparison between the target and a weighted av-
erage of the controls. More importantly it highlights the assumptions
underlying methods such as difference in differences and synthetic con-
trol and in doing so suggests ways in which these assumptions may be
tested. Our focus is on time series models that are both simple and
transparent. Potential gains from fitting such models are analysed and
their relative performance is investigated using examples taken from
the literature, including the effect of the California smoking law of
1988 and German re-unification. At the same time, some of the draw-
backs to current methodology become apparent. It is argued that a
time series strategy for the selection of a valid set of controls is to be
preferred to one based on data-driven regression methods.
KEYWORDS: common trends; difference in differences; interven-

tion analysis; stationarity tests; synthetic control; unobserved compo-
nents.
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1 Introduction

Assessing the impact of events or policy changes from time series data is a
challenging problem in the social sciences. The simplest way to proceed is
by a before and after comparison, but the diffi culty is that the behaviour of
the target variable might have changed in the absence of any intervention.
Hence the need for a time series on a comparative variable, unaffected by
the event in question, to act as a control. The counterfactual evidence so
obtained provides the basis for assessing the effect of the event.
The most widely used method of analysis is difference-in-differences (DD).

The difference in sample means before the event is compared with the differ-
ence after. Such studies have increasingly had a time series dimension, with
a moderate number of observations both before and after the event; see the
summary table in Bertrand et al (2004, Table 1). The key assumptions in
these studies are, firstly, that there is a once and for all shift in the target
series and secondly that, once allowance has been made for the effect of the
event, the underlying difference between the target series and the control
series remains the same throughout the sample. The second assumption can
be tested if the sample is not too small. As regards the first, there are many
applications where a dynamic response, in which there is a gradual adjust-
ment to the intervention, may be more plausible that a ‘hard’break. Unless
there is prior knowledge about the form of the response - an unlikely scenario
- the best approach would seem to be to use a control variable to track the
evolution of the changes.
When there is more than one potential control variable, the question

arises as to how they should be employed. Abadie, Diamond and Hain-
mueller —hereafter ADH —have addressed this issue in a series of influential
papers. In particular, ADH (2010) assess the effect of the California smok-
ing law of 1989, while ADH (2015) seeks to determine whether per capita
income in West Germany fell as a result of German re-unification in 1990.
The methodology they propose is, as expressed in ADH (2010, p 493), ‘...
the use of data-driven procedures to construct suitable comparison groups.’
A weighted average of the selected series is called a synthetic control (SC).
The weighting is determined in the pre-event period by not only choosing
the synthetic variable to closely match the movements in the characteris-
tic of interest in the target series, but by also matching other measurable
characteristics in the target and control groups.
In this article we approach the issues surrounding the assessment of the
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effect of an intervention from a time series perspective. Time series issues are
rarely addressed in the literature, perhaps because most of the early work on
DD focused on the cross-sectional aspects of a two-period study. Bertrand et
al (2004) caution against the dangers of ignoring serial correlation in conduct-
ing inference in DD studies. The point is well made, but the consequences
of failing to appreciate the time series properties of the data could be far
more serious than computing a misleading standard error. More often than
not, economic and social time series are non-stationary and this presents
new problems - and opportunities - for analysis. Of particular importance
is the question of whether the series in a group of controls are co-integrated
with the target. An assessment of the statistical properties of DD and SC
methods can be made by formulating a multivariate time series model in
which one of the variables is the target and the others are potential controls.
The model provides a yardstick against which the validity and effi ciency of
other methods can be judged. In contrast to ADH, no additional variables
are used. This is also the case in the panel data approach of Hsiao et al
(2012). However, Hsiao et al (2012) are concerned primarily with panels of
stationary series. They also assume that the dynamics of the intervention
follow a stationary process which in our framework is neither necessary nor
desirable. Bai et al (2014) extend some of the results in Hsiao et al (2012)
to nonstationary time series, but in many other respects their approach is
very different from ours. Both papers contain some interesting asymptotic
results but while these are reassuring we feel that asymptotics should not be
the prime methodology driver in small samples.
The modest length of the available time series means that models must

be relatively simple if they are to be useful. They also need to be trans-
parent and to yield results with a clear interpretation. Structural time series
models formulated in terms of stochastic trends fulfill this requirement. Such
models have been used successfully for many years; see, for example Harvey
(1989) and, more recently, Brodersen et al (2015) and Varian (2014). Their
potential value in connection with control groups was sketched out in Harvey
(1996), following on from the work done by Harvey and Durbin (1986) to as-
sess the impact of the 1983 seat belt law in Great Britain. An example from
economics is the study by Angeriz and Arestis (2008) on the effect of the in-
flation targeting strategy adopted by Sweden, using the European Monetary
Union as a control. Vujic, Commandeur and Koopman (2016) show how the
approach can be used to investigate the effects of policy changes on crime
rates.
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In section 2 we analyse the role of dynamics when the number of poten-
tial controls is small. Although the SC term is used by ADH in connection
with their methodology to select controls and assign them weights, it is used
more generally here to denote any weighted average of selected controls. We
set out a multivariate model for target and control series. This enables us to
determine the conditions under which a SC is valid and whether it is effective
in the way that it uses the available information. The potential gain from
fitting the full model is then examined with the analysis being supported and
illustrated by simulation evidence in Section 3. The implications for the DD
estimator are essentially the same. Section 4 discusses how to select a valid
set of controls from a large donor pool using time series methods. Our model
selection methodology is then applied to the California smoking law and Ger-
man reunification examples of ADH. We also comment briefly on the Hong
Kong example used by Hsiao et al (2012) and analysed further by Gardeaz-
abal and Vega-Bayo (2016). Section 6 explains how to deal with seasonality
within the structural time series framework and Section 7 concludes.

2 Synthetic control and time series models

A synthetic control is constructed as a combination of contemporaneous val-
ues of N series on the characteristic of interest, that is

yct =
N∑
i=1

wijyit = w′yt, t = 1, ...., T.

where the weights, wi, i = 1, ..., N, in the N × 1 vector w are chosen in the
pre-intervention period. The effect of the intervention is then tracked by
y0t− yct , t = τ , ..., T, having made allowance for a difference in level. We will
regard an SC as valid if y0t − yct is stationary.
Questions1 arise about whether the weights should sum to one and/or be

positive. When the problem is approached by formulating a multivariate time
series model, all that matters is the dynamic properties of the target variable
and the potential controls. The answers to the questions about weights are
then clear.

1Further work on the criteria for constructing a synthetic control can be found in a
recent paper by Doudchenko and Imbens (2016).
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Simply using y0t − yct to track the intervention effect ignores the dy-
namics of the series and any information on dynamics contained in the pre-
intervention values of y0t. When a model is formulated, it raises the issue
as to what might be lost by using a SC as opposed to working with the full
model. Broadly speaking there is a trade off between effi ciency and robust-
ness, with small sample issues being particularly important. Note that a
control yct which does not have the property that y0t − yct is stationary may
still be useful provided an appropriate model is constructed.

2.1 Constructing a valid synthetic control

Consider a multivariate model

y0t = µt + µ0 + ε0t, t = 1, . . . , T,
yt = θµt + µ+ εt,

(1)

in which µt is a common stochastic trend,

µt = µt−1 + δt−1 + ηt, δt = δt−1 + ζt, (2)

taking the value zero at t = 0 and δt is the slope. The vectors in the second
equation of (1) are all N × 1. The disturbances ηt, ζt and ε0t are normally
distributed and serially independent with zero means and variances σ2η, σ

2
ζ and

σ20, while εt is multivariate normal and serially independent with covariance
matrix Σε. All the disturbances are mutually independent. Setting σ2η = 0
makes the trend an integrated random walk (IRW), whereas setting σ2ζ to
zero yields a random walk plus drift. The assumptions could be relaxed, for
example (εt, ε

′
t)
′ might be a stationary multivariate ARMA process.

The above model provides a vehicle for analyzing the construction of
a SC that can track the potential movements in y0t after an intervention.
Subtracting yct from the first equation in (1) gives

y0t − yct = µ+(1−w′θ)µt + ε0t −w′εt, t = 1, ..., T,

where µ = µ0 − w′µ, but when (1 w′)′ is a co-integrating vector2, w′θ =1
and y0t − yct is stationary. When θ = i, where i is a vector of ones, there is

2At the simplest level, a co-integrating vector is one that yields a stationary time series
when applied to series that need to be differenced to make them stationary. The concept
is a fundamental one in time series econometrics and is covered in most standard texts.

5



balanced growth. In this case, w′θ = w′i =1 and so the weights sum to one.
On the other hand, if the weights are constrained to sum to one, but y0t− yct
contains a stochastic trend component, the SC will not generally be valid,
because y0t − yct will not be stationary.
In the panel control approach proposed by Hsiao et al (2012) the weights

are given by OLS. Such weights will not, in general, sum to one, but when µt
in (1) is replaced by a stationary common factor, there is no longer a clear
case for θ = i. For nonstationary series the weights must sum to one under
balanced growth if y0t − yct is to be stationary. The restricted least squares
(RLS) solution, which chooses w to minimize

∑τ−1
t=1 (y0t− µ−w′yt)

2 subject
to w′i =1, is

ŵ= S−1yysy + sS−1yyi = wOLS + sS−1yyi, (3)

where Syy =
∑τ−1

t=1 yty
′
t and sy =

∑τ−1
t=1 yty0t and s = (1 − i′S−1yysy)/i

′S−1yyi.
Controls with a large variance tend to be downweighted by the second term.
Note that there is nothing to prevent some of the weights being negative. An
SC constructed as ŵ′yt will be denoted ŷct .
The easiest way to compute ŵ is to subtract one of the controls from

all the other controls and the target and then do an OLS regression. The
coeffi cient of the subtracted control is equal to unity minus the sum of the
coeffi cients on the other controls. In other words y0t − yit is regressed on a
constant and theN−1 contrasts, yjt−yit, j 6= i to give ŵj and ŵi = 1−Σj 6=iŵj.

2.2 Modeling the intervention

Suppose there is an intervention at time t = τ , where τ is large enough
to enable simple time series models to be constructed. The pattern of the
response is rarely known, but if it is assumed that the full effect works its
way through after m ≥ 1 time periods, a set of pulse dummies may be added
to complement the step dummy.
Assuming balanced growth, that is θ = i in (1),

y0t = µt + µ0 + λdt +
∑m

j=1 λjd
∗
t + ε0t, t = 1, . . . , T,

yt = iµt + µ+ εt,
(4)

where the potential permanent shift in the level of y0t is captured by a step
dummy

dt =

{
0 for t < τ +m,

1 for t ≥ τ +m
, 1 < τ +m ≤ T,
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whereas the intermediate effects are modeled by m pulse dummies3

d∗t =

{
0 for t 6= τ + j − 1,

1 for t = τ + j − 1
, j = 1, ...,m.

The effect of the intervention is transitory if m > 0 and λ = 0. If no assump-
tion is made about reaching a new level, then m = T − τ + 1 and only pulse
dummies are present.

Remark 1 Simple restrictions may sometimes be put on the pattern of pulse
dummy coeffi cients. For example if λj = (j/m)λ, j = 1, ...,m, the d∗′t s are
replaced by dt × (j/m) from t = τ to τ +m− 1.

Subtracting the SC from y0t as given by the first equation in (4) gives the
contrast

y0t − yct = µ+ λdt +
m∑
j=1

λjd
∗
t + εt, t = 1, ..., T, (5)

where εt = ε0t − w′εt. The dummy variables can then be estimated by
regression. When there are only pulse dummies, they are estimated as
λ̂j = y0,τ+j−1 − ycτ+j−1 − µ̂, j = 1, .., T − τ + 1, where µ̂ is the mean of
the pre-intervention contrast. If w is treated as fixed and ε0t and εt are
white noise,

V ar(λ̂j) = V ar(µ̂) + σ20 − 2w′σε+w′Σεw, j = 1, ..., T − τ + 1, (6)

with4

V ar(µ̂) =
σ20 − 2w′σε+w′Σεw

τ − 1
.

If εt is serially correlated, it may be modeled by a stationary ARMA process
or V ar(λ̂j) replaced by a nonparametric estimator based on the residual
correlogram.

Remark 2 When there is a hard break, that is no dynamic adjustment, the
estimator of λ obtained from (5) is just a generalized DD based on yct . With
a valid control, λ can be estimated consistently. Setting the weights to be
equal, that is wi = 1/N results in a simple sum of the means of the N control
groups.

3Note that d∗t = dt+j − dt+j−1. Other parameterizations are possible, for example∑m
j=0 λjdt−j can replace λdt +

∑m
j=1 λjd

∗
t .

4In some circumstances it may be possible to set µ = 0, as in ADH(2010), but this is
the exception rather than the rule.
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The structure of (4) provides insight into the weighting schemes used for
the construction of a SC. Suppose the parameters, σ2η, σε=Cov(εt, εt) and
Σε=V ar(εt), together with the initial conditions, µ0 and µ, are known and
that all the post-intervention dummies are pulses. Smoothed estimates of the
common trend, µtpT , t = 1, .., T, can be computed by the Kalman filter and
smoother based on all T observations from the control groups and the first
T0 from the target; see Durbin and Koopman (2012). The optimal estimator
of the target in the post-intervention period is then

y0tpT = µ0 + µtpT + ε0tpT , t = τ , ..., T, (7)

where ε0tpT = β′εtpT , with β = Σ−1ε σε and εtpT = yt − µ− iµtpT . Thus

y0tpT = µ0 + µtpT + β′(yt − µ− iµtpT ), t = τ , ..., T. (8)

The corresponding estimators of the pulses are λ̃j = y0t− y0tpT , j = 1, ..., T −
τ + 1. Since y0t − y0tpT = (1− β′i)(µt − µtpT ) + ε0t − β′εt,

V ar(λ̃j) ' (1−β′i)2V ar(µt−µtpT )+σ20−β′σε, j = 1, ..., T −τ+1. (9)

The approximation comes from the (small) cross-product involving µt − µtpT
and ε0t +β′εt.When µ0 and µ are estimated there are additional terms, but
these are dominated by the terms already present.

Remark 3 When there is no stochastic trend, so µt = µtpT = 0, and µ0 and
µ are estimated, the first term in (9) is replaced by (σ20−β′σε)/(τ −1). This
formula is exact and may be compared directly with (6).

Remark 4 If there are no controls, the trend can be estimated from the
observations before the intervention. Then V ar(λ̃j) ' V ar(µt − µtpτ−1) +
σ20, j = 1, ..., T − τ + 1. However, V ar(µt − µtpτ−1) is unbounded as t →
∞. When there is an eventual permanent shift, at τ + m, the observations
after stabilization can be used to give a bounded estimate of the trend in the
intermediate period. However, the permanent change cannot be estimated
consistently (as T →∞).

Now consider the SC based on the RLS weights, ŵ. In the population
these weights are given by

w′ε= σ′εΣ
−1
ε + sεi

′Σ−1ε = β′+ sεi
′Σ−1ε , where sε = (1−β′i)/i′Σ−1ε i. (10)
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This result is obtained by noting that whenw′i =1, y0t−w′yt = µ+εt, where
εt = ε0t−w′εt, and so minimizing

∑τ−1
t=1 (y0t−µ−w′yt)

2 subject to w′i =1 is
the same as minimizing

∑τ−1
t=1 εt

2 subject to w′i =1. In the population, this is
equivalent5 to minimizing V ar(εt) = σ20−2w′σε+w′Σεw, subject to w′i =1.
The weights in (10) may also be written as

w′ε=
1

i′Σ−1ε i
i′Σ−1ε +β′

[
I− 1

i′Σ−1ε i
ii′Σ−1ε

]
. (11)

Here the elements in the first term on the right hand side sum to one, whereas
those in the second term sum to zero. The first term estimates the common
trend, so a comparison with (8) can be made by writting

yc0t = µ0 + µ̂t + β′(yt − iµ̂t − µ), t = τ , ..., T, (12)

where µ̂t = (i′Σ−1ε i)−1i′Σ−1ε (yt − µ). The pulses are estimated as λcj =
y0,τ+j−1 − yc0,τ+j−1, j = 1, .., T − τ + 1, and a little manipulation gives

V ar
(
λcj
)

=
(1− β′i)2

i′Σ−1ε i
+σ20−β′σε, j = 1, ..., T − τ + 1. (13)

The first term in (13) comes from estimating the level as µ̂t as opposed to
µtpT in (9). When β

′i = 1, yc0t and y0tpT are the same. On the other hand,
when β = 0, only µt is estimated.

Remark 5 When there is only one control, V ar
(
λcj
)

= σ20+σ
2
1(1−2β).With

σ0 = σ1 and a correlation of ρ, V ar(λ̃j) ' (1−ρ)2V ar(µt− µ̃tpT )+σ20(1−ρ2)
whereas V ar(λcj) = 2σ20(1 − ρ). The ratio of the last two terms is (1 + ρ)/2

and this is the effi ciency of λcj, relative to λ̃j, when there is no stochastic
trend (and intercepts are estimated.)

The fact that µ̂t, unlike µtpT , uses only contemporaneous observations on
the controls suggests that the trend component in a SC might benefit from
some smoothing, that is µ̂t in (12) is replaced by

µ̂tpT =
∑
j

w∗j µ̂t+j, (14)

5Bai et al (2014) state that wε is unique and consistently estimated by OLS, wOLS .
This result might be taken to suggest that there is no need to use RLS. However, such a
strategy may not be a good one in small samples; see the illustration in the application to
German re-unification.
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where the weights w∗j sum to one and the summation is over observations
close to t. For example, w∗1 = w∗−1 = 0.25 and w∗0 = 0.5. The advantage of
fitting a model is that the weights adapt to the propertes of the data rather
than being arbitrary.

2.3 Estimation by maximum likelihood and regression

Full ML estimation can be carried out on (4). Alternatively a valid SC, yct ,
can be constructed and the system transformed to

y0t − yct = µ+ λdt +
∑m

j=1 λjd
∗
t + εt, t = 1, . . . , T,

yct = µt + w′µ+ w′εt
y∗t − iyct = µ∗ + ε∗t − iw′εt,

(15)

where the first equation is as in (5), y∗t contains N − 1 of the controls - it
doesn’t matter which one is dropped - and µ∗ and ε∗t are the corresponding
elements of µ and εt. Full ML on this system is the same as on (4).
As noted earlier, the SC estimators of the intervention effects are obtained

by carrying out a regression on the first equation in (15). An intermediate
solution between estimating the joint model for all N + 1 variables and the
single equation for y0t − yct is to estimate the y0t − yct equation jointly with
the one for yct . In other words, estimate a bivariate model made up of the
first two equations in (15).
A system equivalent to (15) is obtained by replacing yct by one of the

control variables, yit, i = 1, ..., N . The full ML estimators of the interven-
tion coeffi cients are then obtained without constructing yct . Furthermore, as
suggested earlier by the discussion of RLS, a single equation estimator of
the intervention coeffi cients based on RLS SC can be obtained simply by
regressing y0t − yit on the intervention variables, a constant and the N − 1
differences, yjt − yit, j 6= i. The estimates are the same as those obtained by
full ML estimation of the multivariate model consisting of the equation for
y0t − yit together with the N − 1 for yjt − yit, j 6= i. However, the computed
SEs are different. The single equation constructs the RLS SC indirectly and
in doing so allows for the estimation error in the weights.
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3 Potential gains from model-based estima-
tion

Estimating the effect of an intervention by subtracting the RLS SC from the
target series is straightforward and yields valid inferences provided the un-
derlying assumption of balanced growth holds. A correctly specified model
can yield more effi cient estimators and the purpose of this section is to ex-
plore the magnitude of potential gains. We note in passing that although
these gains will not be realised by a misspecified model, such a model will
nevertheless offer some gains to the extent that it successfully estimates a
trend and in doing so provides a more advantageous decomposition than the
one offered6 by yc0t in (12); see Harvey and Delle Monache (2012, pp 88-99).
Consider a simple model with two controls, that is N = 2, and Σε = I2.

Let σ′ε = ( ρ 0 ). Then E(ε0t | εt) = σ′εΣ
−1
ε εt = ρε1t and

wε=

[
1/2 + ρ/2
1/2− ρ/2

]
=

[
(1 + ρ)/2
(1− ρ)/2

]
.

Now consider the following special cases when the trend and constants are
known. (i) With ρ = 1, yct = w′εyt = y1t. The intervention effect is obtained
exactly obtained from y0t − y1t. Thus y1t is a perfect control and there is
nothing to be gained from trying to estimate a multivariate model. (ii)
When ρ = 0, yct = w′εyt = (y1t + y2t)/2. In this case V ar(y0t − yct ) = 1.5,
but V ar(y0t − µt) = 1, so if it were possible to estimate the trend exactly,
there would be a gain in effi ciency. This gain can be realized with a bivariate
model for y0t and ySCt . (iii) With ρ = −1, yct = w′εyt = y2t and so the first
series is discarded. Thus V ar(y0t − yct ) = V ar(y0t − y2t) = 2. There is no
gain from the bivariate model for y0t and yct , but in the trivariate model y1t
enables the target to be estimated exactly because it is perfectly (negatively)
correlated with the target irregular.
The analysis indicates potential gains for models when the trend is known.

We now report a Monte Carlo experiment to determine how much is lost by
having to estimate the trend. The model consists of a (common) random
walk plus drift with the irregular specified as above. The signal-noise ratio
is q. Constants and a slope are estimated, but the actual values do not

6As a simple illustration, suppose there is only one control. Let µtpT = 0.25yt−1 +
0.5yt + 0.25yt+1. Let σ20 = σ21 and let q be the signal-noise ratio in a RW. Then this
weighted estimator has a smaller variance than the SC if q < 5− 8ρ.
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affect the results of the simulations and the same is true of the intervention
parameter. Table 1 is for T0 = 20 and T1 = 10, with the MSEs denoting the
average over all post-intervention periods, that is (T − τ)−1

∑T
j=τ+1[(λj −

λ̂0j)
2]. The estimates for SC and the model (TSM) were obtained using

20,000 replications. The SC model is estimated on the pretreatment sample
alone, whereas the TSM is estimated over the full sample, omitting only
the post treatment sample for the treated unit. With known parameters,
there were 100,000 replications for TSM. In the case of known SC, the MSEs
can be computed exactly: it is not diffi cult to show that the variance is
(3 − 2ρ − ρ2)/2 and so for ρ = −0.5, 0 and 0.5 the variances are 1.88, 1.50
and 0.88 respectively. The pattern of MSEs for different values of ρ is as
suggested by the analysis with the MSEs increasing as ρ moves from 1 to −1
but the gain from estimating the full model becoming increasingly apparent,
even when the parameters are estimated. When the parameters in the model
are given, the SC is never superior, but when parameters are estimated this
need not be the case. However, only for ρ = 0.5 and q = 1.5 is SC better
and then only marginally. Finally it can be seen that the model performs
relatively better, the smaller is q. Indeed with a very large value of q, a single
control would effectively measure the intervention exactly.

Model ρ q = 0.1 q = 0.25 q = 0.5 q = 1 q = 1.5
SC -0.5 1.96 1.97 1.95 1.95 1.95
TSM 1.15 1.29 1.41 1.57 1.66
Known SC 1.87 1.88 1.88 1.87 1.88
Known TSM 1.02 1.14 1.27 1.41 1.50
SC 0 1.59 1.58 1.58 1.58 1.59
TSM 1.25 1.31 1.37 1.44 1.49
Known SC 1.50 1.50 1.50 1.50 1.50
Known TSM 1.12 1.18 1.23 1.30 1.34
SC 0.5 0.92 0.92 0.92 0.92 0.92
TSM 0.86 0.89 0.90 0.92 0.93
Known SC 0.87 0.88 0.88 0.87 0.88
Known TSM 0.78 0.79 0.81 0.82 0.83
Table 1. Forecast MSE for treatment - N = 2, T − τ = 10, γ = 0

The model is now extended by letting the correlation between the two
controls be γ rather than zero. With fixed parameters known, the SC weights
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Figure 1: Average MSEs of estimates of interventions

are given by

wε =
[
1−γ+ρ
2(1−γ)

1−γ−ρ
2(1−γ)

]′
Now only the first series is used in the SC when γ + ρ = 1, whereas with
γ − ρ = 1, only the second is used. Figure 1 shows the results for γ = 0.5
together7 with those for γ = 0. The values of q are as in Table 1 with the
lowest curve corresponding to q = 0.1. As can be seen, estimation from the
full model provides even greater effi ciency gains over the full support of ρ
(noting that |Σε| > 0 only for |ρ| <

√
3/2).

4 Selecting the controls

The strategy adopted by ADH and HCW for selecting a set of controls
from a large donor pool is to use a data-driven approach in which the pre-
intervention observations in the target variable are matched as closely as
possible by a small subset of potential donors. The main difference is that
whereas ADH use a number of related variables both to select the best con-
trols and to weight them, HCWuse only the variables themselves. In addition

7Note that when γ + ρ = 1 only the first series is used in the SC.
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ADH constrain the weights of the selected controls to be positive and to sum
to one
In selecting a set of controls for nonstationary time series our concern is

to ensure that they are on the same growth path as the target. The validity
of a potential control may therefore be assessed by a stationarity test on
the difference or contrast between it and the target. As will be seen from
the applications, this strategy can lead to very different results from those
obtained in the earlier studies.

4.1 Stationarity tests in small samples

Because the number of observations in the pre-intervention period is typically
small, we conducted a small Monte Carlo experiment to assess size and power
of the tests due to Nyblom and Mäkeläinen (1983) and Kwiatkowski et al
(1992) - hereafter NM and KPSS - when T = 20. The KPSS test depends on
a lag, `, with ` = 0 giving the NM statistic. The model is as in Kwiatkowski
et al. (1992), namely

yt = µt + εt

µt = µt−1 + ηt and εt = φεt−1 + ξt,

where the disturbances ηt and ξt are mutually independent and generated
as ηt ∼ N(0, q) and ξt ∼ N(0, 1 − φ2). The results in Table 2 are for φ set
to zero or 0.5 and q = {0, 0.1, 0.5}. A 10% level of significance, for which
the critical value is 0.347, is adopted. For each set of parameters, 10,000
simulations were used to calculate the rejection probabilities.

Table 2. KPSS(l) Rejection Rates for Tests of I(0) versus I(1) with T = 20.

φ q l = 0 (NM) l = 1 l = 2 l = 3 l = 5 l = 7
0 0 0.101 0.099 0.103 0.101 0.102 0.125

0.1 0.445 0.416 0.383 0.343 0.306 0.274
0.5 0.695 0.621 0.562 0.512 0.439 0.367

0.5 0 0.422 0.277 0.227 0.183 0.154 0.155
0.1 0.606 0.457 0.388 0.338 0.286 0.251
0.5 0.761 0.629 0.554 0.498 0.403 0.340

When there is no autocorrelation in the transitory component, εt, the
tests have excellent size. As dependence is introduced, the probability of
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rejection starts to exceed the nominal size of 0.10. Increasing the number
of lags is beneficial up to l = 6, but beyond that size is adversely affected.
For lower lags there is a trade-off between size and power. Kwiatkowski et
al (1992) suggest a rule of l =

⌊
4(T/100)1/4

⌋
, which yields l = 2 for T = 20.

Table 2 confirms that l = 2 strikes a good balance.
The suggested control selection strategy is one in which KPSS tests are

carried out on the contrasts of all units in the donor pool. The units are then
ordered according to the magnitude of the KPSS statistic and only selected
when the null hypothesis of stationarity is not rejected at a particular level of
significance8. The weights for a SC are then obtained by RLS. As is apparent
from (3), this may result in small weights being assigned to variables where
the contrast has a large variance. Such variables may then be dropped from
the SC group, though if their contrasts have small KPSS statistics they may
still be of value in a multivariate model.
In order to avoid the data-mining pitfalls associated with machine learn-

ing, ADH(2014) have a training sample followed by an estimation sample.
However, this approach is neither necessary nor desirable for short nonsta-
tionary time series where the aim is to determine whether the target and
potential controls are on the same path for the whole pre-intervention pe-
riod.

4.2 Statistical significance, diagnostic checking and ro-
bustness

For a given group of controls, tests can be carried out on the significance
of the intervention variables and the question as to whether the changes
have stabilized after a period of time can be addressed9. A good starting
point is the estimates obtained by subtracting the SC from the target. For
nonstationary data, it is clear from (5) that tests based on an assumption of
stationarity are valid provided the controls are co-integrated with the target.
It is worth making this point because according to Gardeazabal and Vega-
Bayo (2016, Section 3) - ‘...the panel data approach allows for traditional

8Note that we have shown that the tests tend to be conservative.
9A test for the significance of an intervention could be carried out directly from a

contrast using the cointegration breakdown test of Andrews and Kim (2006).
If it is assumed a new level has been reached, the target series residuals can be tested

for stationarity. When a hard break is estimated, the KPSS test can include the post
intervention observations by adopting the modification in Busetti and Harvey (2001).
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inference as long as the outcome variable is stationary, whereas the synthetic
control10 relies on randomization for inference.’
When time series models are fitted, diagnostics for residual serial cor-

relation and other indications of misspecification can be carried out in the
pre-intervention period and then when the full sample is used. Of course,
such tests are not possible for the target in the post-intervention period when
only pulses are estimated. When there are several controls, it may be useful
to check whether they remain co-integrated after the intervention.

5 Applications

In this section we look at three prominent applications in the literature and
examine the various strategies for the selection of a set of controls. Estimates
based on the RLS SC and models involving the specification of a stochas-
tic trend are then compared. For the first two applications the underlying
framwork is one of balanced growth based on an IRW trend.

5.1 Smoking in California

Proposition 99 came into effect in January 1989. It contained a wide range
of laws and measures to cut down on smoking. Full details can be found in
ADH(2010, pp 497-8). The data used by ADH consists of annual state level
observations on per capita cigarette consumption11.
A plot of the data for California up to 1988 shows a slow increase in

the early 1970s followed by a downward trend beginning in the late 1970s.
The change in direction is also apparent from a plot of first differences. A
univariate time series model therefore needs to include a stochastic slope to
allow for the changes in direction. In fitting a univariate local linear trend
model, as in (2), the level variance is set to zero so as to minimize the number
of parameters to be estimated and to ensure that there is enough flexibility
to capture the changes in slope. The estimate of the signal-noise ratio, σ2ζ/σ

2
ε,

10The SC inference referred to in this quote is based on a placebo method introduced
by ADH. Paraphrasing ADH (2010, p501), ‘Could our results have been obtained entirely
by chance?’. They try to answer the question by seeing what happens when each of the
controls is taken to be the target. As such it takes account of the control variable selection
strategy as well as the assignment of weights.
11We follow ADH in not taking logarithms.
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Figure 2: Fit of a local linear trend model to California smoking data from
1970 to 1988. Trend, slope and irregular are obtained by Kalman filter and
smoother using the STAMP package of Koopman et al (2008).

is 3.334. There is little evidence of residual serial correlation as r(1) = 0.067
while Q(5) = 8.899. Figure 2 shows the fitted trend, together with the slope
and irregular.
Figure 3 shows the forecasts from 1989 onwards. Although the first few

observations are below the predicted values, the difference is not great. Only
two are beyond one root mean square error (RMSE) and then only just. Thus
it appears that the law had no effect. Bringing controls into the picture tells
a different story.
Having discarded some states, mainly because of action they took to

combat smoking in the post-intervention period, ADH (2010) obtained a
donor pool of 38 states. On the basis of a set of predictor variables, as given
in their Table 1, they chose five states which were assigned weights so as to
best reproduce the pre-intervention California observations. The states and
their weights are: Colorado (0.164), Connecticut (0.069), Montana (0.199),
Nevada (0.234) and Utah (0.334).
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Figure 3: Forecasts from a univariate model for California

If the assumptions underlying the balanced growth model are to be satis-
fied, the contrast, or difference, between the target and each of the controls
should be a stationary time series. Figure 4 shows the contrasts between the
five states in the ADH control group and California, together with their cor-
relograms. Colorado and Montana seem to be on the same path, in that they
are moving in parallel with California. (It is not necessary for the difference
to be zero.) The correlograms support this conclusion in that the autocorre-
lations after the first soon become small. This is not the case with the other
three states. The Utah and Nevada contrasts are both moving towards zero
but from opposite directions, so it seems that they are offseting each other.
On the basis of the preceding analysis, we decided to fit a trivariate model

to California, Colorado and Montana using the STAMP package of Koopman
et al (2008). For the data before 1989, a good fit was obtained. We then
estimated the model for all 31 observations, but with 1989 onwards treated
as missing for California ( This is essentially the same as estimating a full
set of pulse dummies and subtracting them from California.) The smoothed
estimates for post 1988 California are shown in Figure 5 together with the
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Figure 4: Contrasts between California and Colorado (Col), Connecticut
(Conn), Montana (Mont), Nevada (Nev) and Utah, together with their re-
spective correlograms.
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Figure 5: Smoothed estimates with post 1988 California observations treated
as missing

series for Colorado and Montana.

The apparent unsuitability of two of the ADH controls prompts a return
to the donor pool. The results for KPSS(2) tests applied to the contrasts
with California prior to the intervention, are shown in Table 3, together with
the contrast for the ADH synthetic control. It is reassuring that Colorado
and Montana are in the top four. On the other hand, both Connecticut and
Utah - included in the ADH control- have high values. This is consistent with
the correlograms of Figure 4 and supports our decision not to include them.
Nevada is also rejected at the 10% level of significance but the statistic is
smaller and close to that of the ADH SC. Clearly Idaho is a strong contender
for a control, as are North Carolina and Wyoming. However, the graph of the
contrasts in Figure 4 shows North Carolina and Wyoming to be much more
variable than Idaho and therefore perhaps less suitable. The variances of the
contrasts presented in the last column of Table 3 are highly informative in
this respect.

20



Cal­NC
Cal­Idaho

Cal­Wy

1970 1975 1980 1985 1990
­100

­80

­60

­40

­20

0

20 Cal­NC
Cal­Idaho

Cal­Wy

KPSS (2) Rank ADH Weight Variance
Idaho 0.218 1 - 24.9
North Carolina 0.249 2 - 364.5
Colorado 0.286 3 0.164 19.7
Montana 0.309 4 0.199 19.4
Wyoming 0.334 5 - 129.9
ADH Synth Cont 0.421 - -
Nevada 0.422 6 0.234 183.7
Kentucky 0.506 7 -
North Dakota 0.522 8 -
Delaware 0.531 9 -
Indiana 0.547 10 -
Connecticut 0.593 11 0.069 95.3
Utah 0.625 15 0.334 56.7

Table 3 Ordered stationarity tests statistics for contrasts with California
from 1970 to 1988 (T = 19). Bold typeface indicates a failure to reject the
null of co-integration at the 10% level of significance; the critical value is

0.347.

On the basis of the KPSS results, it was decided to include Idaho in the
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Figure 6: California-SC [Colorado, Idaho, Montana], mean -adjusted

control group. It is re-assuring that after 1988 Colorado, Idaho and Montana
continue along a similar path. The RLS weights12 for the period 1970-88
were 0.385 for Colorado, 0.288 for Idaho and 0.327 for Montana. The OLS
estimates summed to 0.939 and were 0.356, 0.275 and 0.308 respectively. It
is interesting to note that when Montana was replaced by Wyoming, which
has a higher variance, RLS gave estimates of 0.609, 0.410 and −0.019. The
Wyoming weight is small and with the wrong sign. North Carolina fared
similarly when it replaced Wyoming: its coeffi cient was 0.04. The reason for
the small weights is apparent from the second term in (3).
The SC constructed from our RLS weights is contrasted with California

in Figure 6. The contrast has been adjusted for the mean prior to the in-
tervention. The SC hovers around zero prior to 1989 and indicates that the
effect of the intervention may have stabilized by the mid-90s; see also Figure
5. In what follows a level break is assumed for 1995.
Fitting the multivariate model with contrasts with respect to Colorado

12The RLS weights were obtained by regressing the California-Colorado contrast on the
Colorado contrasts with Idaho and Montana.
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gave a slope disturbance variance of 3.736. The estimate of the irregular
covariance matrix can be transformed to yield a covariance matrix for the
states themselves ( as opposed to contrasts) to give, in the order Colorado,
Montana and Idaho,

Σ̃ε =

 14. 78 −5. 32 3. 11
−5. 32 19. 35 9. 42
3. 11 9. 42 30. 98

 , σ̃ε =

 −3. 25
−0.72
4. 24

 and σ̃20 = 2. 45,

from which β̃
′

= (−0.367, −0.261, 0.253) and i′β̃= −0.376. Inserting the
above figures into the population RLS formula, (10), gives w̃ε = (0.395, 0.363,
0.242)′; these weights are close to those obtained from the RLS regression.
The bivariate model was fitted to the contrast between California and

the RLS SC. This gave a slope disturbance variance for SC of 2.298 and a
(transformed) irregular covariance matrix for California and SC equal to

V ar

(
ε0t
εt

)
=

[
0.979 −0.701
−0.701 9. 379

]
The single equation for the California constrast with SC had a residual vari-
ance of 9.54 which is similar to the figure of 11.76 that the bivariate model
produced for the irregular variance of this contrast.
Table 4 shows the intervention effects and their estimated standard errors

as obtained from the full multivariate model, the bivariate model and the
single equation for the target minus the SC. The estimated SEs indicate a gain
from using the models, but remember that they are computed conditional
on the parameters13. The bivariate model appears to perform as well as the
multivariate model. The reason the model estimates have smaller SEs than
those obtained by simply subtracting the SC is that the sum of regression
coeffi cents, β, implied by the estimated covariance matrix of the irregular
components is negative. In the multivariate model it is −0.376, as in the
previous paragraph, and in the bivariate model it is −0.075.

13 Allowance can be made for serial correlation in the SC equation by noting that
r(1) ' 0.5 whereas higher order correlations are close to zero.
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Multivariate Bivariate SC
Year Estimate SE Estimate/SE Estimate SE Estimate SE
1989 −2.55 1.42 −1.80 −4.87 1.60 −0.81 3.68
1990 −8.20 1.90 −4.31 −7.41 1.89 −7.75 3.68
1991 −15.91 2.05 −7.41 −16.03 2.02 −15.97 3.68
1992 −16.87 2.07 −8.16 −17.39 2.05 −17.58 3.68
1993 −22.52 2.00 −11.31 −21.78 2.00 −22.06 3.68
1994 −29.00 1.74 −16.68 −26.28 1.89 −29.58 3.68
1995 −27.85 1.47 −18.91 −28.12 1.53 −27.82 1.68
Table 4a Estimated intervention effects for California; level change in 1995

Table 4b shows the regression estimates obtained for the ADH SC.Whereas
the differences between the three estimation procedures in Table 4a are never
very big, this is not true of the differences between them and the estimates
given by the ADH SC. Note that the SEs of the ADH estimates are smaller
than the SC SEs in Table 4b. This is because the ADH SC is made up of
five states rather than three. Finally it is worth adding that the estimates
obtained for 1989 to 1994 simply by subtracting the ADH SC from the target
only differ from those shown in Table 4b in the second decimal place.

ADH SC
Year Estimate SE
1989 −7.57 1.86
1990 −9.67 1.86
1991 −13.47 1.86
1992 −14.07 1.86
1993 −17.77 1.86
1994 −22.11 1.86
1995 −23.83 0.85

Table 4b Estimated intervention effects for California with ADH SC

5.2 German Re-unification

The Berlin wall came down on November 9th 1989 and German re-unification
took place on October 3rd 1990. The question addressed in ADH(2015) is
whether re-unification led to a fall in real per capita GDP for what had
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Figure 7: Univariate predictions for annual real per capita GDP in West
Germany, in 2002 US dollars.

been West Germany. For the pre-unification characteristics they employ
various predictors of economic growth, specifically per capita GDP, inflation,
industry share of value added, investment rate, schooling, and a measure of
trade openess. Drawing on a donor pool of 16 OECD counties, they construct
weights for the SC by cross-validation (CV) over the period 1971 to 1990,
using the first ten years for training and the second ten for validation. The
final weights, based on the data from 1981 to 1990, are Austria (0.42), Japan
(0.16), Netherlands (0.09), Switzerland (0.11) and USA (0.22).
Unlike ADH we follow the usual practice of transforming to logarithms.

The predictions for West Germany from a univariate model with IRW trend,
shown in Figure 7, indicate a gap that is big and increasing. The question
is whether a similar gap will be found when post-unification Germany is
compared with countries which were on a similar growth path prior to 1990.

An inspection of Figure 8 immediately reveals a problem with one of
the countries selected by ADH, namely Japan. Japan has a bigger growth
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Figure 8: Annual per capita GDP in West Germany, USA and Japan.

rate than Germany up to 1990 and then slows down for reasons primarily
connected with an ageing population. Unlike Austria and USA, the Japan
contrast shown in Figure 9 is clearly on a downward path before 1990 and this
continues after 1989. In other words, Japan is closing the gap with Germany.
However, after 1997 the gap starts to increase.
Table 5 shows the KPSS(2) test results for the individual series selected

by ADH and the contrasts with West Germany. The first column is for a
deterministic versus a stochastic trend, whereas the second is for a fixed slope
in an I(1) series versus an I(2) series, that is a stochastic slope. The results
are consistent with our argument that Germany, USA and Austria are all best
modeled as I(2) series. The KPSS balanced growth co-integration test in the
third column supports the notion that before unification, Germany, USA and
Austria were on the same growth path14. The unsuitability of Japan as a

14The KPSS(1) results are similar. We also tested for co-integration with a trend in-
cluded. This test rejected co-integration in all countries (apart from Netherlands) because
the trend is very weak and so the test statistic did not change enough to compensate for
the smaller critical value.
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control is confirmed and it seems that the Netherlands and Switzerland are
also ruled out. Despite this last finding, the aggregate in the ADH SC does
appear to be co-integrated with Germany.

Null I(0) I(1) Coint (Level) Var×10−5 ADH weight
Trend Yes No No -
Crit Value (10%) 0.119 0.347 0.347 -
West Germany 0.184∗ 0.445∗ - -
ADH Synth Cont 0.181∗ 0.528∗∗ 0.206 −
USA 0.185∗∗ 0.455∗ 0.166 0.357 0.22
Austria 0.192∗ 0.513∗∗ 0.212 0.487 0.42
Netherlands 0.189∗∗ 0.434∗ 0.665∗∗ 0.09
Switzerland 0.125∗ 0.152 0.587∗∗ 0.11
Japan 0.170∗∗ 0.331 0.701∗∗ 0.16
France 0.181∗∗ 0.429∗ 0.056 0.164
Italy 0.184∗∗ 0.416∗ 0.648∗∗

Table 5. KPSS(2) tests for log of annual real per capita GDP from 1971
to1989.

Significance at a 5% and 10% level is indicated by ** and * respectively.

ADH included neither France nor Italy in their control set. However,
Table 5 suggests that France should be included, and this is confirmed by
Figure 10. After 1989 France continues on the same path as Austria and
USA.
The RLS weights for the period 1971-89 were 0.153 for Austria, 0.373 for

USA and 0.474 for France. The corresponding OLS estimates were 0.382,
0.396 and 0.212. Thus RLS is not close to OLS, even though the OLS coef-
ficients sum to 0.990. The main reason is that the Franco-German contrast
has a much smaller variance than that of Austria and Germany.
Figure 11 shows the contrast of our RLS-SC with Germany. The figure

also shows the contrast of Germany with the average of Japan and Switzer-
land, countries which together make up 27% of the SC of ADH. Our RLS-SC
appears stationary before 1990. The same cannot be said of the the average
of Japan and Switzerland.
Multivariate, bivariate and single equation models were fitted on the as-

sumption that the unification effect had stabilized by 1999. All three models
fit well, with very little residual serial correlation. The estimates of the in-
tervention effects for the full model and the SC regression are shown in Table
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Figure 9: Contrasts between Germany and Austria, Japan and the USA.

6. The bivariate model is omitted because the estimates are almost identical
to those of the single equation and the SEs are identical. The full model and
SC results are very close as are their SEs. The reason the SC performs so
well is that when the bivariate model is estimated it is found that the implied
value of β is 0.957 . Thus this combination of controls is almost perfect. Note
that the univariate forecasts in Figure 7 indicate a much bigger gap than is
obtained with our preferred control series.
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Figure 10: Contrasts for Germany with Austria, France and USA

Multivariate SC
Year Estimate SE Estimate/SE Estimate SE
1991 0.0271 0.0091 2.97 0.0276 0.0093
1992 0.0123 0.0091 1.35 0.0137 0.0093
1993 −0.0205 0.0091 −2.45 −0.0183 0.0093
1994 −0.0422 0.0091 −4.63 −0.0387 0.0093
1995 −0.0495 0.0091 −5.43 −0.0466 0.0093
1996 −0.0595 0.0091 −6.52 −0.0556 0.0093
1997 −0.0846 0.0091 −9.29 −0.0820 0.0093
1998 −0.0934 0.0091 −10.25 −0.0915 0.0093
1999 −0.1168 0.0045 −26.26 −0.1147 0.0045

Table 6 Estimated intervention effects for Germany. Level break in 1999
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Figure 11: Contrast of Germany with RLS-SC made up of Austria, France
and USA and contrast of Germany with the average of Japan and Switzer-
land.
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5.3 Hong Kong

Hsiao et al (2012) - HCW - propose a panel control variable approach for
assessing the impact on the change in Hong Kong sovereignty in July 1997.
They use quarterly growth rates on real GDP which they then treat as sta-
tionary and deseasonalized. As noted by Gardeazabal and Vega-Bayo (2016),
differencing results in a loss in information and so is not ideal for assessing
the effect of an intervention. For example, an immediate break appears as a
single outlier and so could easily be missed. Such problems do not arise if
seasonality is handled as described in the next section.
The above considerations notwithstanding, it is instructive to examine

the control selection methodology used by HCW. On the basis of the 18 ob-
servations from 93(1) to 97(2) they choose four countries out of a pool of ten,
which was determined according to geographical considerations. The choice
was based on regressing Hong Kong on groups of countries and selecting the
group that gave the best fit. The estimated regression coeffi cients, with ‘t-
statistics’ in parentheses were as follows: Japan: −0.675(−6.052), Korea:
−0.432 (−6.821), USA: 0.486 (2.214) and Taiwan: 0.793 (2.558). As can
be seen, Japan and Korea have negative weights whereas USA and Taiwan
are weighted positively. The sum of the weights is 0.172. The net result, as
shown in Figure 12, is a large negative estimate of a temporary intervention
effect. The reason is simple. The Asian crisis, which began in July 1997,
affected many countries including Korea and the large negative weight for
Korea in the panel SC causes it to go up. HCW do not mention the fact
that their method has resulted in the construction of such an inappropriate
control because they conclude that the intervention effect is temporary and
statistically insignificant15.

6 Seasonality16

A seasonal component in a structural time series model is usually captured
by a multivariate random walk for a vector of seasonal effects, which are
constrained to sum to zero; see Koopman et al (2008) or Proietti (2000).
Full ML estimation can be carried out on (4) with a seasonal component in

15We note in passing that a temporary change in growth rates can give a permanent
change in level, but this is not relevant to the point we are making.
16This section can be omitted without a loss in continuity.
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Figure 12: Hong Kong and panel control group

each equation. If there is a pool of potential donors, valid controls may again
be selected by stationarity tests. With deterministic seasonality, Phillips and
Jin (2002) have shown that the critical values of the KPSS test are unaffected.
When seasonality is stochastic, a test can be carried out on seasonal moving
averages.

Remark 6 When there is a dynamic effect for the intervention, as opposed
to an immediate level shift, prior seasonal adjustment of the target series is
problematic: it can only be done using the pre-intervention observations with
the estimated seasonal pattern just before the intervention being used to sea-
sonally adjust the post-intervention observations. In a model, the estimated
seasonal in the target can take account of any observations after the effect
of the intervention has stabilized as well as benefitting from correlations with
the seasonals in other series.

A seasonally adjusted SCmay be obtained from an equation in which y0t−
yit depends on the other contrasts, as in RLS, plus a stochastic seasonal17.

17The form of the seasonal model remains the same in a linear combination of variables.

32



The intervention variables may then be estimated by extending (5) to include
a seasonal component. Alternatively they may be added to the contrast
equation used to construct the seasonally adjusted SC, in the same way as
was suggested at the end of sub-section 2.3.
An example is provided by the 1983 car seat belt law in Great Britain.

Quarterly series on (logarithms of) numbers killed and seriously injured, from
1969(1) to 1984(4) were analysed in Harvey (1986) using rear seat passengers,
who were not required to wear belts, as a control for front seat passengers;
see also Koopman et al (2008, p 103-4). Figure 13 shows the effect of the
seat belt law as estimated by pulse dummies from 83(1) to 84(4) in a bi-
variate model with balanced growth and by the difference between driver
and rear seat passengers, having made allowance for the seasonals18 as well
as the difference in level. The difference estimates are much more variable,
reflecting the contrast between ε0t and ε1t. Furthermore, the effect of the law
as measured by the differences seems to increase with time, with the (de-
seasonalized) average in 1984 being −0.309 as opposed to −0.231 in 1983.
On the other hand, the bivariate model shows no evidence for an increasing
response, because in 1983 the change is −0.253 and in 1984 it is −0.267. Re-
estimating the model with an additional level shift in 1984 gave no change
in the 83(1) shift (to three significant figures), while for 84(1), the change is
−0.014 (0.044), which is clearly statistically insignificant.
Figure 14 shows the smoothed series after estimating a hard break in

83(1) from a balanced growth model. The estimate of λ was −0.259 with an
estimated SE of 0.028. There was very little residual serial correlation. The
DD estimate of λ is −0.270 with an estimated SE of 0.031, indicating a slight
loss in effi ciency.

7 Conclusion

In this article we have shown how simple and transparent dynamic models can
be used to estimate the effect of an event or policy change on a nonstationary
time series using control series. The time series framework also enables us
to analyse synthetic control and difference in differences estimators. If these
methods are to be valid, the target and a control series must have a common

18The seasonals are fixed and estimated by assuming that there is a hard level shift.
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Figure 13: Effect of seat belt law as captured by bivariate model (bold) and
difference between drivers and rear seat passengers.
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Figure 14: Smoothed levels of (logarithms of ) Drivers and Rear Seat Pas-
sengers killed and seriously injured in Great Britain, with allowance made
for the seat belt law.

trend with the property that subtracting one series from the other gives a
stationary series prior to the intervention. This balanced growth assumption
is implicit in studies involving synthetic control and difference in differences
estimation but it is rarely tested, or even acknowledged.
In order to determine whether series from a pool of potential donors are

valid as controls, we propose selecting series that are found to be co-integrated
with the target series on the basis of stationarity tests applied to the contrast
with the target. We show the tests to be reliable for small samples. Graphs
of the series provide supporting evidence and transparency. Once a set of
valid controls has been selected, the weights for a synthetic control are found
by a restricted least squares regression. This approach is in stark contrast to
data-driven methods that select control series and weight them by regressions
involving what are thought to be explanatory variables19. The applications
to the California smoking law of 1989 and to German re-unification call into

19In order to be viable, such methods require that the sample prior to the intervention be
large enough to allow it to be broken into training and estimation sub-samples. However,
even if this can be done, there is still no guarantee that the series that make up the
resulting SC will be valid.
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question the validity of some series chosen as controls in the original studies
and, at the same time, suggest that a few excluded series may be strong
candidates for inclusion.
When a valid synthetic control has been chosen according to time se-

ries considerations, the analysis can be extended by setting up a regression
equation in which permanent and transitory effects of an intervention can
be estimated, together with their standard errors. Extensions to include
seasonal effects and serially correlated components are easily implemented.
The simplicity of such a synthetic control approach is attractive. However,
because a SC only estimates the underlying trend from contemporaneous
observations, a model can still offer significant gains in the accuracy with
which intervention effects can be estimated. Furthermore the very act of for-
mulating a model highlights the assumptions being made and suggests ways
of testing them. Indeed even if the target and control series do not exhibit
balanced growth, a suitably specified model still allows valid inference to be
made on intervention effects.
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